

HDI-P3050

Seat No.

M. C. A. (Sem. III) (CBCS) Examination

November / December - 2017 Operation Research

Time : $2\frac{1}{2}$ Hours]

[Total Marks : 70

- 1 (A) Attempt the following objective question:
 - (1) Give any two names of OR models.
 - (2) Explain objective oriented approach of OR.
 - (3) Give the advantages of OR.
 - (4) Define Linear.
 - (B) Attempt any one out of two from the following: 2
 - (1) What is Operation Research?
 - (2) List out the features of OR.
 - (C) Attempt any one of two from the following:
 - (1) Write the dual of the following LP problem:

Min :
$$Z = 3 \times 1 - 2 \times 2 + 4 \times 3$$

Subject to constraints:

(a)
$$3x1+5x2+4x3>=7$$

(b)
$$6 x 1 + x2 + 3 x 3 > = 4$$

(c)
$$7 \times 1 - 2 \times 2 - x3 < = 10$$

(d)
$$4 \times 1 + 7 \times 2 - 2 \times 3 > = 2$$

 $\times 1, 2x, \times 3 > = 0$

(2) What are the phases of OR?

- (D) Attempt any one out of two from the following : ${\bf 5}$
 - (1) Use the graphical method to solve following problem:

Maximize $Z = 15x_1 + 10x_2$

Subject to constraints:

- (a) $4 \times 1 + 6 \times 2 < = 360$
- (b) $3 \times 1 < 180$
- (c) $5 \times 2 < 200$
- (2) Use the Dual Simplex method to solve following problem:

Max. Z = -2x1 - x3

Subject to constraints:

- (a) x1 + x2 x3 > = 5
- (b) $x1-2 \times 2 + 4 \times 3 > = 8$
- **2** (A) Attempt the following questions:

In simplex method, when type of constraints is less than or equal to, what type of extra variable is needed?

- (2) Non basic variables are those that have value of zero. This statement is true or false?
- (3) Give the formula to find out the new replaced row.
- (4) Big-M method is also known as _____ method.
- (B) Attempt any one out of two from the following: 2
 - (1) In simplex method, give the formula to find Z and ΔZ .
 - (2) Give the conditions of Big-M method for maximization case.

- (C) Attempt any one out of two from the following:
 - (1) Which are the cases for change in objective function coefficient?
 - (2) Write a note on sensitivity analysis.
- (D) Attempt any one out of two from the following: 5
 - (1) Solve the following problem using Revised simplex method:

Max.
$$Z = 2 x 1 + x2$$

Subject to constraints:

(a)
$$3x1+4x2 < = 6$$

(b)
$$6 \times 1 + x^2 < 3$$

(2) Consider following LP problem:

Max.
$$Z = 3x_1 + 5x_2$$

Subject to constraints:

(a)
$$3 \times 1 + 2 \times 2 < = 18$$

(b)
$$x1 + 2 \times 2 < = 4$$

(c)
$$x^2 < 6$$

Obtain an optimal solution of the given problem. Suppose x_6 is added to the given LP problem. The coefficients of x_6 in the constraint are 1, 1, 1 and objective function coefficient is 2. Find out the change in optimal problem.

3 (A) Attempt the following questions:

4

- (1) Give the full form of VAM.
- (2) Explain RIM condition.
- (3) What do you mean by non degenerate solution?
- (4) Give the names of initial solution methods.

- (B) Attempt any one out of two from the following:
 - (1) Write the steps of NWCM.
 - (2) What are the conditions to be satisfied by the solutions obtained by any of the initial solution methods?
- (C) Attempt any one out of two from the following: 3
 - (1) Draw the mathematical model of Transportation Problem.
 - (2) Solve using LCM:

	D_1	D_2	D_3	D_4	Supply
S_1	19	30	50	10	7
S_2	70	30	40	60	9
S_3	40	8	70	20	18
Demand	5	8	7	14	

- (D) Attempt any one out of two from the following: 5
 - (1) Find out the feasible solution to the following problem using VAM method:

	D_1	D_2	D_3	D_4	Supply
S_1	21	16	15	3	11
S_2	17	18	14	23	13
S_3	32	27	18	41	19
Demand	6	10	12	15	

(2) Solve using MODI method:

	D_1	D_2	D_3	Supply
S_1	4	8	8	76
S_2	16	24	16	82
S_3	8	16	24	77
Demand	72	102	41	

4 (A) Attempt the following questions:

4

- (1) What is full form of AP?
- (2) Give the name of the mathematician who developed Hungarian method.
- (3) Which type of matrix should be in Hungarian method?
- (4) Give two names of solution methods to solve AP.
- (B) Attempt any one out of two from the following:
 - (1) Explain travelling salesman problem.
 - (2) Explain Hungarian method.
- (C) Attempt any one out of two from the following: 3
 - (1) Draw the mathematical model of Assignment problem.
 - (2) Find out the solution using Hungarian method:

	A	В	C
A	120	100	80
В	80	90	110
C	110	140	120

- (D) Attempt any one out of two from the following: 5
 - (1) Find out the solution using Hungarian method:

	A	В	C	D	E
A	10	5	13	15	16
В	3	9	18	13	6
C	10	7	2	2	2
D	7	11	9	7	12
E	7	9	10	4	12

(2) Find out the solution using Travelling salesman problem :

	A	В	C	D	E
A	_	2	5	7	1
В	6	_	3	8	2
C	8	7	_	4	7
D	12	4	6	_	5
E	1	3	2	8	_

5 (A) Attempt the following questions:

4

- (1) Give the full form of PERT.
- (2) What is network?
- (3) Which company developed CPM?
- (4) Give the full form of AOA.
- (B) Attempt any one out of two from the following: 2
 - (1) Explain slack of an event.
 - (2) Give the formula of Total float and Free float.
- (C) Attempt any one out of two from the following: 3
 - (1) Draw the network diagram from the following activities:

Activity	A	В	C	D	E	F	G	H
Predecessor				1	A, B	1 B C	D, E, F	E
Activity	_	_	_	A	A, D	A, B, C	D, E, F	

(2) What do you mean by Activity ? Explain its different types.

(1) Following table shows the activities, predecessor activities and time duration:

	Activity	A	В	C	D	E	F	G
	Pr edecessor Activity	1	A		C	B,C	D, E	F
T	Time Duration	6	1	8	5	9	12	3

- (a) Draw the network diagram for the project.
- (b) Find the critical path.
- (2) Study the following table:

	Estimated Duration (weeks)							
Activities	Optimistic time	Most Likely time	Pessimistic time					
$\frac{1-2}{}$	1	1	7					
1 - 3	1	4	7					
1 - 4	2	2	8					
2-5	1	1	1					
4-6	2	5	8					
5-6	3	6	15					

- (a) Draw the network diagram and find the critical path.
- (b) What is the expected project length?